

Cambridge International AS & A Level

MATHEMATICS (9709) P3

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 1

Algebra

1. 9709_s20_qp_31 Q: 2

	coefficients.
•	
	••
	State the set of values of x for which the expansion is valid.

2 .	9709	s20	αp	32	Q:	1

Find the quotient and remainder when $6x^4 + x^3 - x^2 + 5x - 6$ is divided by $2x^2 - x + 1$. [3]
<u> </u>

$3.\ 9709_s20_qp_33\ Q:\ 1$	
Solve the inequality $ 2x - 1 > 3 x + 2 $.	[4]
	.0
	20
	•

4. 97	$^{'}09_{ m w}20_{ m qp}_31~~{ m Q:}~1$
S	Solve the inequality $2 - 5x > 2 x - 3 $. [4]
•	
•	
•	
•	
•	
•	3
•	29
•	100
•	
•	

5. 9709_w20_qp_31 Q: 9

(a)

Let $f(x) =$	$8 + 5x + 12x^2$
Let $I(x) =$	$\frac{1}{(1-x)(2+3x)^2}$.

Express $f(x)$ in partial fractions.	[5]
	
~***	
**	

)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 [5]
	**

 $6.\ 9709_w20_qp_32\ Q:\ 2$

(a)	Expand $\sqrt[3]{1+6x}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients.
	.04
	NO.

(b)	State the set of values of v for which the expension is valid
(U)	State the set of values of x for which the expansion is valid. [1]

7	9709	m19	an	39	\bigcirc	Q
1.	9709	m_{19}	qρ	ე∠	Q:	0

Let $f(x) =$	$12 + 12x - 4x^2$
Let $I(x) =$	$\overline{(2+x)(3-2x)}.$

(i)	Express $f(x)$ in partial fractions.	[5]
		₹
		<u></u>
	A0'0'	

•••••		•••
•••••		•••
		•••
		•••
		•••
	10	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
44		
		•••
*		
		•••
		•••
		•••

8.	9709_s19_c	qp_31 Q: 8
	Let $f(x) =$	$\frac{16 - 17x}{(2 + x)(3 - x)^2}$

Express $f(x)$ in partial fractions.	[5]
	. 0
	NOY
4	
~~	

				••••••	•••••
	•••••			••••••	•••••
•••••	••••••	,	,	••••••	
					0.
••••••					
				<u> </u>	
			OF .		
•••••	•••••••			••••••	•••••
•••••	•••••••	~0		••••••	••••••
	4				
		>			
••					
					•••••
•••••				•••••	•••••
•••••			•••••		•••••
•••••	••••••		•••••	•••••	•••••

9. 9709_s19_qp_32 Q: 1

Find the coefficient of x^3 in the expansion of $(3-x)(1+3x)^{\frac{1}{3}}$ in ascending powers of x . [4]
~~~~





10. 9709_s19_qp_33 Q: 9

Let $f(x) =$	2x(5-x)
Let $I(x) =$	$(3+x)(1-x)^2$

(i)	Express $f(x)$ in partial fractions.	[5]
		•••••
	. 29	
		· • • • • • •
		, <b></b>
		•••••
		•••••
	~~	•••••
		•••••
		•••••
		•••••
		•••••
		•••••





••	
••	
••	
••	
••	
••	
	.0.
••	
••	
••	
••	
••	
••	
••	
••	
••	
	•••
••	
••	
••	





Solve the inequality $ 2x $	-3  > 4 x+1 .			
		, • • • • • • • • • • • • • • • • • • •	•••••	
				100
				20
			-	
			<del>,</del>	
		2		
	00		•••••	
		,	•••••	
		•••••	•••••	





12	9709	w 19	an	32	O	3
ıΔ.	9109	WIÐ	αb	JZ	Q.	J

The polynomial $x^4 + 3x^3 + ax + b$ , where $a$ and $b$ are constants, is denoted by $p(x)$ . When $p(x)$ is divided by $x^2 + x - 1$ the remainder is $2x + 3$ . Find the values of $a$ and $b$ . [5]
<i>/</i> ************************************
***





13. 9709_w19_qp_33 Q: 1	
Solve the inequality $2 x+2  >  3x-1 $ .	[4]
	20
	Or -





14. 9709_w19_qp_33 Q: 2

The polynomial $6x^3 + ax^2 + bx - 2$ , where a and b are constants, is denoted by $p(x)$ . It is given that $(2x + 1)$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(x + 2)$ the remainder is $-24$ . Find the values of a and b.
29





15. 9709_m18_qp_32 Q: 2 Expand  $\sqrt[4]{(1-4x)}$  in ascending powers of x, up to and including the term in  $x^3$ , simplifying the coefficients.





16. 9709_s18_qp_31 Q: 4

The polynomial $x^4 + 2x^3 + ax + b$ , where $a$ and $b$ are constants, is divisible by $x^2 - x + 1$ . Find the values of $a$ and $b$ . [5]
**





17. 9709_s18_qp_31 Q: 9

I -4 6()	$12x^2 + 4x - 1$
Let $f(x) =$	$\overline{(x-1)(3x+2)}$

	[5
	•••••
	•••••
6.0	





(ii)	Hence obtain the expansion of $f(x)$ in ascending powers of $x$ , up to and including the term in $x^2$ . [5]
	<b>(O)</b>
	20





 $18.\ 9709_s18_qp_32\ Q:\ 9$ 

Let 
$$f(x) = \frac{x - 4x^2}{(3 - x)(2 + x^2)}$$
.

Express $f(x)$ in the	3-x	$2 + x^2$ .			
	•••••	•••••		•••••	
•••••	•••••			•••••	
	•••••				
	•••••			•••••	
•••••	•••••	•••••			
	•••••				••••••
	•••••	•••••			•••••
	•••••	•••••		•••••	
				•	
	•••••	•••••			
	•••••				
• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••
		-0			
••••••		40	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
				•••••	••••••
**					
***					





Hence obtain the expansion of $f(x)$ in ascending powers of $x$ , up to and including the term i
P'0'
•• • • • • • • • • • • • • • • • • • • •





19. 9709_s18_qp_33 Q: 1

Expand $\frac{4}{\sqrt{(4-3x)}}$ in ascending powers of $x$ , up to and including the term in $x^2$ , simplifying the coefficients. [4]
<b>3</b>
39
Co





 $20.\ 9709_w18_qp_31\ Q\!:\, 1$ 

Find the set of values of x satisfying the inequality $2 2x - a  <  x + 3a $ , where a is a positive constant. [4]





. 9709_w18_qp_32 Q: 1	
Solve the inequality $3 2x-1  >  x+4 $ .	[4
	0-
	100
	92





 $22.\ 9709_w18_qp_32\ Q:\ 8$ 

Let $f(x) =$	$7x^2 - 15x + 8$
	$\frac{1}{(1-2x)(2-x)^2}$ .

Express $f(x)$ in partial fractions.	[5
	*0
	<b>V</b>
60	
20	
AQ •	







		•••
•••••		•••
•••••		•••
		•••
••••••		•••
		•••
••••••		•••
•••••		•••
		•••
		••••
••••••		•••
	NOY	
		•••
••		
		•••
		••••
••••••		•••
		•••





Solve the inequality $ x-4  < 2 3x + 1 $ .	[4]
	0-
	- 100
	***
10.0	
*	





**(i)** 

 $24.\ 9709_m17_qp_32\ Q:\ 9$ 

Let $f(x) =$	x(6-x)
Let $I(x) =$	$\frac{1}{(2+x)(4+x^2)}$ .

Express $f(x)$ in partial fractions.	[5]
	<u> </u>
	••••••





Hence obtain the expansion of $f(x)$ in ascending powers of $x$ , up to and including the term i
•••





25.	9709_s17_qp_31 Q: 1
	Solve the inequality $ 2x+1  < 3 x-2 $ . [4]
	29
	C





27.	9709_s17_qp_32 Q: 2
	Solve the inequality $ x-3  < 3x-4$ . [4]
	<b>3</b>
	29
	.00
	A00
	.**





28.  $9709_s17_qp_32~Q: 8$ 

Let $f(x) =$	$5x^2 - 7x + 4$
Let $I(x)$ –	${(3x+2)(x^2+5)}$ .

Express $f(x)$ in partial fractions.	
	.0
	10
	<b>X</b> 0
60	
100	
0.0	
***	

ES 2017 9709/32/M/J/17





•••	
•••	
•••	
•••	
•••	ACA
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	





29. 9709_s17_qp_33 Q: 2

Expand $(3 + 2x)^{-3}$ in ascending powers of x up to and including the term in $x^2$ , simplifying the coefficients. [4]
<i>/'0</i>
50





Find the quotient and remainder when $x^4$ is divided by $x^2 + 2x - 1$ .	[
	70
	<b>19</b>
-0	••••••





 $31.\ 9709_w17_qp_32\ Q:\ 8$ 

Let $f(x) =$	$8x^2 + 9x + 8$
Let $I(x) =$	$\frac{1}{(1-x)(2x+3)^2}$

Express $f(x)$ in partial fractions.	[.
	10
	40
	<b>(</b> 0)
<u> </u>	
40	





•	
•	
•	
•	
•	
•	
•	
•	
•	
_	***
•	





 $32.\ 9709_m16_qp_32\ Q:\ 4$ 

The polynomial  $4x^3 + ax + 2$ , where a is a constant, is denoted by p(x). It is given that (2x + 1) is a factor of p(x).

- (i) Find the value of a. [2]
- (ii) When a has this value,
  - (a) factorise p(x), [2]
  - (b) solve the inequality p(x) > 0, justifying your answer. [3]







 $33.\ 9709_s16_qp_31\ Q:\ 1$ 

(i) Solve the equation 2|x - 1| = 3|x|. [3]

(ii) Hence solve the equation  $2|5^x - 1| = 3|5^x|$ , giving your answer correct to 3 significant figures. [2]







 $34.\ 9709_s16_qp_31\ Q:\ 8$ 

Let 
$$f(x) = \frac{4x^2 + 12}{(x+1)(x-3)^2}$$
.

- (i) Express f(x) in partial fractions.
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in  $x^2$ .







 $35.9709_s16_qp_32$  Q: 2

Expand  $\frac{1}{\sqrt{(1-2x)}}$  in ascending powers of x, up to and including the term in  $x^3$ , simplifying the coefficients.







36.  $9709_s16_qp_33~Q:1$ 

Solve the inequality 2|x-2| > |3x+1|.

[4]







 $37.\ 9709_s16_qp_33\ Q:\ 10$ 

Let 
$$f(x) = \frac{10x - 2x^2}{(x+3)(x-1)^2}$$
.

- (i) Express f(x) in partial fractions.
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in  $x^2$ .







 $38.\ 9709_w16_qp_31\ Q:\ 2$ 

Expand  $(2-x)(1+2x)^{-\frac{3}{2}}$  in ascending powers of x, up to and including the term in  $x^2$ , simplifying the coefficients.







 $39.\ 9709_w16_qp_33\ Q:\ 4$ 

The polynomial  $4x^4 + ax^2 + 11x + b$ , where a and b are constants, is denoted by p(x). It is given that p(x) is divisible by  $x^2 - x + 2$ .

(i) Find the values of a and b. [5]

(ii) When a and b have these values, find the real roots of the equation p(x) = 0. [2]







40. 9709_w16_qp_33 Q: 8

Let 
$$f(x) = \frac{3x^2 + x + 6}{(x+2)(x^2+4)}$$
.

- (i) Express f(x) in partial fractions.
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in  $x^2$ .







 $41.\ 9709_s15_qp_31\ \ Q:\ 3$ 

Show that, for small values of  $x^2$ ,

$$(1-2x^2)^{-2} - (1+6x^2)^{\frac{2}{3}} \approx kx^4,$$

where the value of the constant k is to be determined.

[6]







42. 9709_s15_qp_32 Q: 8

Let 
$$f(x) = \frac{5x^2 + x + 6}{(3 - 2x)(x^2 + 4)}$$
.

- (i) Express f(x) in partial fractions.
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in  $x^2$ .







43. 9709_s15_qp_33 Q: 2

Solve the inequality |x-2| > 2x - 3.

[4]







44.  $9709_{\text{w}15}_{\text{qp}}_{31}$  Q: 1

Solve the inequality |2x - 5| > 3|2x + 1|.

[4]







45. 9709_w15_qp_31 Q: 6

The polynomial  $8x^3 + ax^2 + bx - 1$ , where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (2x + 1) the remainder is 1.

(i) Find the values of a and b. [5]

(ii) When a and b have these values, factorise p(x) completely. [3]







 $46.\ 9709_w15_qp_33\ Q:\ 2$ 

Given that  $\sqrt[3]{(1+9x)} \approx 1 + 3x + ax^2 + bx^3$  for small values of x, find the values of the coefficients a and b.



